Chapitre 6 TESTS STATISTIQUES

A. Principe des tests

Partons d'un exemple...Une machine fabrique des tiges d'acier. Si la machine est réglée correctement, l'utilisateur obtient une population de tiges de longueurs moyenne m et d'écart-type σ . On désire savoir si cette machine se dérègle. Ainsi, on prélèvera, à intervalles réguliers, des échantillons pour mesurer la longueur effective des tiges.

Nous faisons alors l'hypothèse H₀ dite hypothèse nulle que la machine est bien réglée. On teste alors cette hypothèse: 2 cas se présentent :

- la machine est bien réglée, on accepte H₀.
- la machine est mal réglée, on rejette H₀ et donc on accepte H₁ dite hypothèse alternative.

<u>Définition</u>: un test statistique est une méthode permettant de prendre une <u>décision</u> à partir d'informations fournies par un **échantillon**.

Cette décision dépend donc de l'échantillon. Ainsi qu'elle que soit la décision prise, on court deux sortes de risques :

- le risque dit de 1ère espèce noté α, est la probabilité de rejeter l'hypothèse H₀ alors qu'elle est vraie en réalité: α = p(rejeter H₀ / H₀ vraie)
- le risque dit de 2nde espèce noté β , est la probabilité d'accepter l'hypothèse H_0 alors qu'elle est fausse en réalité : $\beta = p(\text{accepter } H_0 / H_0 \text{ fausse})$.

Un test est bon si on arrive à minimiser α et β .

B. Test de comparaison à une valeur standard

1. Position de problème

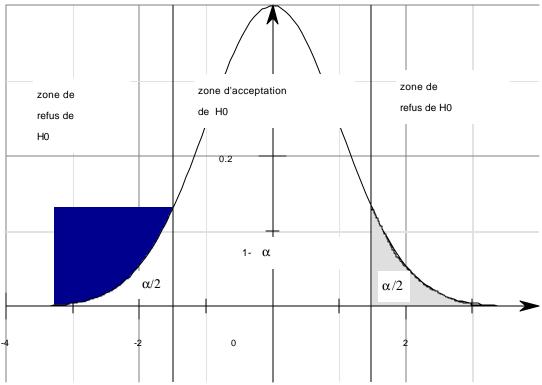
On considère une population P sur laquelle on veut étudier un paramètre γ inconnue associé à un paramètre c. Sur un échantillon de taille n, on obtient γ_e connu. Sur la base de cette valeur observée γ_e , on se propose de comparer la vraie valeur γ à une valeur γ_0 fixée à priori, constituant la valeur standard.

2. Tests relatifs à une moyenne

Soit une population P de grand effectif sur laquelle on étudie un caractère c. La moyenne m de c est inconnue. Sur un échantillon, on a trouvé une moyenne \overline{x}_e . On doit tester la moyenne m par rapport à une valeur notée m_0 qui est la valeur standard.

a) Test bilatéral

Soit H_0 : " $m=m_0$ " l'hypothèse nulle et H_1 : " m_0 " l'hypothèse alternative Soit X la variable aléatoire prenant pour valeurs les moyennes des différents échantillons de taille n=30, alors on sait que X suit une N (m_0 ; $\frac{\sigma}{\sqrt{n}}$), σ étant l'écart-type de la population P.



Il faut donc que X soit telle que $p(m_0 - t_\alpha \frac{\sigma}{\sqrt{n}} < X < m_0 + t_\alpha \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ d'où en faisant le

changement de variable : $T = \frac{X - m_0}{\frac{\sigma}{\sqrt{n}}}$ alors T suit une loi normale centrée réduite N(0,1) d'où

 $p(-t_{_{\alpha}} < T < t_{_{\alpha}}) = 1 - \alpha \text{ c'est à dire } \pi(t_{_{\alpha}}) = 1 - \frac{\alpha}{2} \text{ d'où la règle du test bilatéral :}$

- On choisit un risque α
- on cherche dans la table de la loi normale centrée réduite N(0,1), t_{α} tel que $\pi(t_{\alpha}) = 1 \frac{\alpha}{2}$
- soit \overline{x}_e la moyenne de l'échantillon de taille n alors

si
$$\bar{x}_e \in \left[m_0 - t_\alpha \frac{\sigma}{\sqrt{n}}; m_0 + t_\alpha \frac{\sigma}{\sqrt{n}} \right]$$
, on accepte H_0 avec le risque α

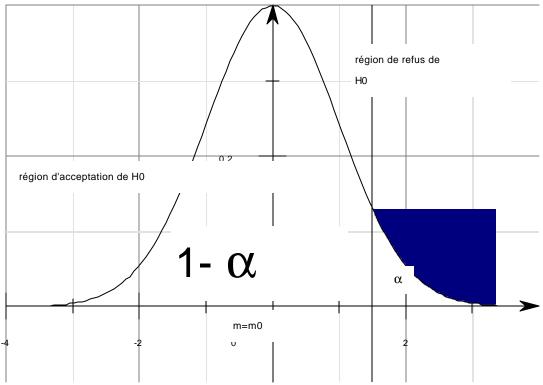
sinon on rejette H_0 et donc on accepte H_1 avec un risque α .

Remarque : dans le cas usuel où $\alpha=5\%$ alors $t_{\alpha}=1,96$ et si $\alpha=1\%$ alors $t_{\alpha}=2,58$.

Si σ est inconnu (ce qui est souvent le cas) alors on prend son estimateur ponctuel $\sqrt{\frac{n}{n-1}}\sigma_e$ où σ_e est l'écart-type de l'échantillon.

b) Tests unilatéraux

Règle du test unilatéral à gauche

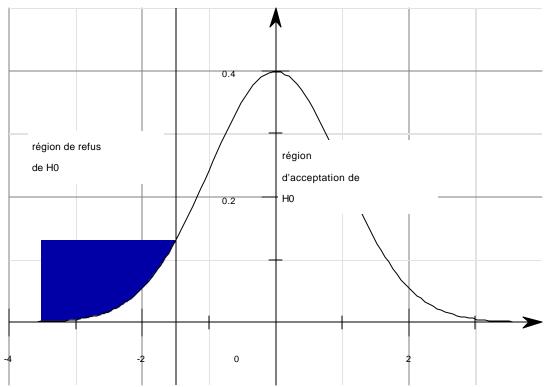


L'hypothèse nulle est H_0 : " $m=m_0$ " et l'hypothèse alternative est H_1 : " $m>m_0$ " On peut la retrouver par exemple dans le cas d'un test de dépassement d'une norme.

- On choisit un risque α
- On cherche dans la table de la loi normale centrée réduite $\mathcal{N}\left(0;1\right)t_{\alpha}$ tel que $\pi(t_{\alpha})=1$ - α
- Si $\bar{x}_e \le m_0 + t_\alpha \frac{\sigma}{\sqrt{n}}$ alors on accepte H_0 sinon on refuse H_0 et donc on accepte H_1

Rem : dans les cas usuels : si $\alpha=5\%$ alors $t_{\alpha}=1,\!645$; si $\alpha=1\%$ alors $t_{\alpha}=2,\!33$

Règle du test unilatéral à droite



L'hypothèse nulle est : H_0 : " $m=m_0$ " et l'hypothèse alternative est : H_1 : " $m < m_0$ " On la retrouve dans les cas de tests de non égalité d'une norme.

- On choisit un risque α
- On cherche dans la table de la loi normale centrée réduite $\mathcal{N}\left(0;1\right)t_{\alpha}$ tel que $\pi(t_{\alpha})=1$ α
- Si $\bar{x}_e > m_0 t_\alpha \frac{\sigma}{\sqrt{n}}$ on accepte H_0 , sinon on rejette H_0 et donc on accepte H_1

Dans ces deux cas, il est très fréquent qu'on ne connaisse pas σ ; on a alors $\frac{\sigma}{\sqrt{n}} = \frac{\sigma_e}{\sqrt{n-1}}$

3. Tests relatifs à un fréquence ou un pourcentage

Tous les tests que l'on vient de voir restent valables ; il suffit de remplacer m par p (proportion inconnue dans la population P), \overline{x}_e par f_e (proportion effective sur l'échantillon) et $\frac{\sigma}{\sqrt{n}}$ par $\sqrt{\frac{f_e(1-f_e)}{n-1}}$

C. Test de comparaison de 2 populations

1. Test de comparaison de 2 moyennes

	Population P1		Population P2	
Caractères Etudiés	С		С	
Moyenne Ecart-type	m_l σ_1	inconnus	m_2 σ_2	inconnus
	Echantillon e ₁		Echantillon e ₂	
Taille Moyenne Ecart-type	$\begin{array}{l} n_{l} > 30 \\ \overline{x}_{e_{1}} \\ \sigma_{e_{1}} \end{array}$	connus	$\begin{array}{l} n_2 > 30 \\ \overline{x}_{e_2} \\ \sigma_{e_2} \end{array}$	connus

Règle du test de comparaison de 2 moyennes

L'hypothèse nulle est : H_0 : " $m_1=m_2$ " et l'hypothèse alternative est H_1 : " $m_1 \mathrel{<\!\!\!>} m_2$ "

- On choisit un risque α
- On cherche dans la table de la loi normale centrée réduite N(0;1) t_{α} tel que $\pi(t_{\alpha}) = 1 \alpha/2$
- Si $\frac{\overline{x}_{e_1} \overline{x}_{e_2}}{\sqrt{\frac{\sigma_{e_1}^2}{n_1 1} + \frac{\sigma_{e_2}^2}{n_2 1}}} \in \left[-t_{\alpha}; t_{\alpha} \right]$ on accepte H_0 sinon on rejette H_0 et donc on accepte H_1
- Si H_0 est acceptée, on dit que la différence m_1 - m_2 n'est pas significative au risque α

2. Règle de comparaison de deux pourcentages

	Population P ₁	Population P ₂
Caractère étudié	С	C
Pourcentage	p ₁ inconnu	p ₂ inconnu
	Echantillon e ₁	Echantillon e ₂
Taille	$ n_{1} > 30$	$n_2 > 30$
Pourcentage	f ₁ connu	f ₂ connu

L'hypothèse nulle est H_0 : " $p_1=p_2$ " et l'hypothèse alternative H_1 : " p_1 p_2 "

- On choisit un risque α
- On cherche dans la table de la loi normale centrée réduite N(0;1) t_{α} tel que $\pi(t_{\alpha}) = 1 \alpha/2$

• Soit
$$f = \frac{n_1 f_1 + n_2 f_2}{n_1 + n_2}$$
 alors si $\frac{f_1 - f_2}{\sqrt{f \left(1 - f \left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right)}} \in \left[-t_{\alpha}; t_{\alpha}\right]$ on accepte H_0 sinon on rejette H_0 et

on accepte donc H₁.

Si H₀ est acceptée, on dit que p₁ - p₂ n'est pas significative au risque α.