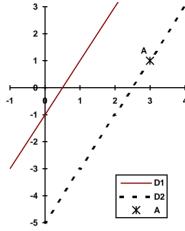
FONCTIONS DU PREMIER DEGRÉ

I. Déterminer l'équation d'une droite parallèle à une autre droite :

- **Exemple :** soit D_1 d'équation y = 2x 1. Trouver l'équation de D_2 // D_1 et passant par le point A = (3;1).
- **Solution :** une droite étant la représentation graphique d'une fonction affine a une équation de la forme y = ax + b
 - deux droites parallèles ont même coefficient directeur donc D_2 // $D_1 \Rightarrow a = 2$
 - D_2 est une droite d'équation y = 2x + b
 - pour trouver b on se place sur le point A où l'on a x = 3 et y = 1
 - l'équation de D_2 en A devient ainsi $1 = 2 \times 3 + b$ d'où b = -5
 - D_3 a donc pour équation y = 2x 5



II. Déterminer l'équation d'une droite perpendiculaire à une autre droite

• **Méthode**: le principe est identique au cas précédent. On utilise le fait que si deux droites sont perpendiculaires, les coefficients directeurs a et a' de leur équation sont liés par la relation : $a \times a' = -1$

III. Déterminer l'équation d'une droite passant par deux points connus :

- Exemple: déterminer l'équation de la droite D passant par A = (-1;3) et B = (2;1)
- Solution avec le taux de variation :

Une droite passant par deux points $A_1 = (x_1; y_1)$ et $A_2 = (x_2; y_2)$

a pour coefficient directeur $a = \frac{y_2 - y_1}{x_2 - x_1}$ c'est-à-dire $a = \frac{\Delta y}{\Delta x}$

C'est le taux de variation de la fonction entre A_1 et A_2 .

On a donc ici : $a = \frac{1-3}{2-(-1)} = -\frac{2}{3}$

D a une équation de la forme $y = -\frac{2}{3}x + b$

En A l'équation devient $3 = -\frac{2}{3} \times (-1) + b \text{ d'où } b = 3 - \frac{2}{3} = \frac{7}{3}$

Ainsi, *D* a pour équation : $y = -\frac{2}{3}x + \frac{7}{3}$

• Solution avec système d'équations :

D a une équation de la forme y = ax + b

En A l'équation devient $3 = a \times (-1) + b \Rightarrow -a + b = 3$

En *B* l'équation devient $1 = a \times 2 + b \implies 2a + b = 1$

On obtient le système $\begin{cases} -a+b=3 & (1) \\ 2a+b=1 & (2) \end{cases}$

 $(1)-(2) \Rightarrow -3a = 2 \Rightarrow a = -\frac{2}{3} \Rightarrow b = \frac{7}{3} \text{ et } y = -\frac{2}{3}x + \frac{7}{3}$

IV. Déterminer l'intersection de deux droites :

• Exemple : déterminer l'intersection I de D_1 et D_2 sachant que

l'équation de
$$D_1$$
 est

$$y = -x + 5$$

l'équation de
$$D_2$$
 est

$$y = \frac{x}{2} + 2$$

• Solution par équation aux abscisses :

Sur
$$I = D_1 \cap D_2$$
 on a

$$-x+5=\frac{x}{2}+2$$

D'où

$$5 - 2 = \frac{x}{2} + x$$

$$3 = \frac{3x}{2}$$
 et $x = 2$

On reporte dans l'équation de D_1

$$y = -2 + 5$$
 et $y = 3$

La solution cherchée est donc

$$I = (2;3)$$

Solution par système d'équations :

l'équation de
$$D_1$$
 peut s'écrire

$$x + y = 5$$

l'équation de D_2 peut s'écrire

$$-\frac{x}{2} + y = 2$$

On résoud le système

$$-\frac{x}{2} + y = 2$$

$$\begin{cases} x + y = 5 & (1) \\ -\frac{x}{2} + y = 2 & (2) \end{cases}$$

$$(1)$$
- (2) $\Rightarrow x$ - $\left(-\frac{x}{2}\right)$ =5-2 $\Rightarrow \frac{3x}{2}$ = 3 $\Rightarrow x$ = 2

En reportant dans (1) on a

